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Summary

This paper presents the results of applying the n ethodology of singular perturbations and time

scales (SPATS) to the control of digital flight systems.._ block-diagonalization method is described that

decouples a full-order, two-time-scale (slow and fast) tiscrete control system into reduced-order, slow

and fast subsystems. Basic properties and numerical _:spects of the method are discussed. This study
reveals an interesting fact that singularly perturbed discrete systems can be viewed as two-time-scale

systems. The closed-loop optimal control of the full-older, two-time-scale system involves the solution

of a full-order, algebraic, matrix Riccati equation. Alternatively, by using the block-diagonalization
method described in this paper, the full-order system s decomposed into reduced-order, slow and fast

subsystems. The closed-loop optimal control of the s_ bsystems requires the solution of only reduced-

order, algebraic, matrix Riccati equations. A compesite, closed-loop, suboptimal control system is
constructed as the sum of the slow and fast, optimal fe_dback controls. The application of this method

to an aircraft model shows close agreement between t_e exact solution and the decoupled (composite)
solution. The main advantage of the method is the con_._iderable reduction in the overall computational

requirements for the evaluation of optimal guidance al_d control laws. The significance of the result is

that it can be used for real-time onboard simulation. "!'his paper also contains a brief survey of digital

flight systems.

1. Introduction

The dynamics of many systems is described by hi,h-order differential equations. Frequently, the

presence of small parameters such as time constants, i lasses, and moments of inertia is the source for

the increased order of the system. A system in which the suppression of a small parameter is responsible
for the degeneration of the dimension of the system i_ called a singularly perturbed system. Such a

system possesses widely separated clusters of eigenwlues exhibiting "slow" and "fast" phenomena.

The high dimensionality coupled with the two-time-s(ale (slow and fast) behavior makes the system
computationally "stiff," with the result that extensive numerical routines are required.

The theory of singular perturbations and time scales (SPATS) in continuous control systems has

reached a level of maturity (refs. 1 to 3) and has been sl ccessfully applied to aerospace problems (refs. 4

to 15). On the other hand, the subject of SPATS in digital flight control systems has not received much
attention so far.

The purpose of this paper is to present a methodo ogy of SPATS to discrete control systems with

an application to an aircraft model. The basic ide_ underlying this method is to apply a block-

diagonalization procedure to decouple a full-order, two-time-scale system into low-order, slow and fast

subsystems. This procedure offers a considerable redu:tion in the overall computational requirements

for developing optimal guidance and control laws. The significance of the result is that it has possible

applications for real-time onboard implementation. Aso, this paper contains a brief survey of digital

flight systems. The results presented in this paper are _n expanded version of those recently published

by the authors in references 16 to 19.

The organization of the paper is as follows. Sectior. 2 describes the concept of digital flight control

and the previous research in this field. The ideas of SF_TS in continuous and discrete control systems
are given briefly in section 3. Section 4 presents a bloc-_-diagonalization procedure to decouple a high-

order, two-time-scale system into low-order, slow and f:_st subsystems. An aircraft example is provided

to illustrate the method. In section 5, the focus is on t_e time-scale synthesis of digital, optimal control

systems. The closed-loop, linear, optimal regulation of the original two-time-scale system requires the

solution of a high-order, algebraic, matrix Riccati eqt_ation. Alternatively, a composite, closed-loop,

suboptimal control is constructed as the sum of slow ai_d fast, optimal feedback controls, which require

the solution of only low-order, algebraic, matrix Ricca_i equations. Numerical results obtained for an

aircraft example show excellent agreement between the, original (optimal) solution and the composite

(suboptimal) solution which is computationally simple .
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Abbreviations:

ADC

DAC

max

min

input matrix

input matrix for subsystem (i = 1, 2)

matrix of order (m x n)

matrix of order (n x rn)

eigenvalue of ( )

feedback matrix

identity matrix

performance index

discrete interval

order of state, z

order of state, x

positive, definite symmetric matrix of Riccati equation

eigenvalue

positive, semidefinite symmetric matrix of order (n+m)x (n+m)

positive, definite symmetric matrix of order (r x r)

order of control, u

time

control vector of order r

state vector of order n

output vector

state vector of order rn

small, positive perturbation parameter

composite mode

fast mode

correction mode

slow mode

zero order

transpose

zero-order solution

analog-to-digital converter

digital-to-analog converter

maximum

minimum

A dot over a symbol indicates a derivative with respect to time.



2. Background

In this section, the idea of digital flight control sysLems is discussed briefly and their advantages
are enumerated. The previous research in digital flight :ontrol is summarized.

A digital control system uses a digital computer to mplement the control logic. The development

of reliable, faster, and inexpensive microcomputers has i ecently aroused considerable interest in digital

control systems (refs. 20 to 24). The first commercial digital computers in the 1950's were not fast

enough or small enough to be placed on space vehicl'_s. The NASA Apollo program spurred the

development of smaller and faster computers for the digital control of boosters and spacecraft in
the 1960's. This technology was transferred to aircra['t by NASA in the 1970's. The invention of

microprocessors in the 1970's made digital computers very small, fast, and inexpensive. Many military

and civilian aircraft now have digital control systems (re_. 25). Digital control, which has made possible

more accurate and sophisticated autopilot logic, promise,_ to be the focal point in most improvements in

navigation, guidance, and control in the future. A digital flight control system contains analog-to-digital

and digital-to-analog converters (ADC and DAC, respe_ tively) as shown in figure 1.
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Figure 1. Concept of digital flight control.

With adequate redundancy incorporated into the ,lesign, digital flight control systems ensure

adequate flight safety. The present capabilities for inco_'porating integrated circuits into lightweight,
low-cost minicomputers and microcomputers make digital implementation of modern flight control

systems especially attractive (refs. 25 to 28).

Another feature of digital implementation is the pq,tential for the synthesis of complex control

systems that involve high-order nonlinearities and that _ltilize time-sharing for multiple-loop control.

One such complex control structure is an adaptive syste:n that is capable of online adjustment of the

control parameters in response to changing flight charac eristics (ref. 29).

The advantages of digital flight control systems over ',heir continuous counterparts are summarized
(ref. 30) as follows:

(1) Use of complex control strategies

(2) Easy implementability

(3) Flexibility in adding or changing functions

(4) Repeatability of performance

(5) System integration and hardware economy

(6) Reduction in cost, size, weight, and power dissip_:tion

In the past, there have been many applications of dig]t;al control theory for flight systems. The first

application of digital technology to flight control was digital implementation of basic analog autopilot

functions (refs. 31 and 32). Modal control theory has bee_L applied to the design of digital flight control



systemssuchaspitch-attitudecontrolsystemsandroll/yaw controlsystemsfor a short takeoffand
landing(STOL)aircraft (refs.33to 36). An algorithmwaspresentedfor obtaininga reduced-order
or simplifiednonlinearmodelof theF-8 aircraft (ref.37). A methodfor thesynthesisof a nonlinear,
automatic,flight controlsysteminvolvingan F-8 aircrafthasbeendeveloped(refs.35and 38). A
residue-measurecriterionhasbeenemployedasanefficientmethodfor modelreductionin thedesign
andanalysisof the digital flight controlsystemof NASA'sSpaceShuttle(ref. 39). Discretedesign
methodshavebeencomparedat varioussampleratesfor severaldifferentflightmodesfor theterminal
configuredvehicle(TCV) at the LangleyResearchCenter,whichis a modifiedBoeing737aircraft
(ref.40). Research has been conducted by NASA into some advanced control laws for the F-8 digital

fly-by-wire (DFBW) program (refs. 29 and 41).

The analysis and control of large systems has been a formidable task, not only because of the high

order of the systems but also because the majority of these systems possess interacting phenomena of

different (slow and fast) speeds. The simultaneous presence of slow and fast dynamics makes the system

computationally "stiff," with the result that extensive numerical routines are required. A stiff system,

having a two-time-scale character, need not necessarily be in the singularly perturbed structure.

3. Singular Perturbations and Time Scales

In this section, the definitions of singular perturbations and time scales in continuous and discrete

control systems are given briefly. Broadly speaking, a continuous (discrete) system described by a

differential (difference) equation containing a small parameter is called a singularly perturbed system
if the order of the system is reduced by neglecting the small parameter. Such a system possesses widely

separated clusters of eigenvalues and exhibits a two-time-scale (slow and fast) character.

Continuous Control Systems

Consider briefly the idea of SPATS in continuous control systems and its application to aerospace
problems. Consider a linear time-invariant system such as

:k = Allx + A12z + Blu (x(t -----O) = x(O)) (la)

ei = A21x + A22z + B2u (z(t = O) = z(O)) (ib)

where x and z are n- and m-dimensional state vectors, respectively, and u is an r-dimensional control

vector. The matrices Air. and B i are of appropriate dimensions, and e is a small, positive perturbation
parameter. The in + my high-order system (eqs. (1)) is in the singularly perturbed form in the sense

that by making e = 0 in equations (1), the resulting system is of reduced order n only, and consequently

the degenerate system does not satisfy the initial condition z(0). That is,

= All x(0) + A12 z{0) +BIU

0 = A21 x(0) -4- A22z (0) + B2u

x(°)(t = 0) = x(0) (2a)

(z(°)(t = O) :/: z(O)) (2b)

Here, let us note that equation (2a) is a reduced-order system of order n only, with equation (2b) being
an algebraic equation, and the initial condition z(0) is lost in the process of degeneration. The singular

perturbation theory retrieves the lost initial condition. The block diagrams of the full, high-order,

or perturbed system (eqs. (1)) and the degenerate, low-order, or unperturbed system (eqs. (2)) are

shown in figure 2. Here we assume that the input u is independent of c. Otherwise, u becomes u (0).

Also, x and z are predominantly slow and fast state vectors, respectively. In a general two-time-scale
(slow and fast) system, the singular perturbation parameter e does not appear explicitly as shown in

equations (1). The essence of the theory of SPATS is to take advantage of the order reduction associated

with the degeneration and to decouple the original system (eqs. (1)) into slow and fast subsystems of
reduced order for further analysis and synthesis.
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Figure 2. Singularly perturbe t continuous system.

The theory of SPATS has been successfully applied to aerospace problems described by continuous

control systems (refs. 4 to 15). The digital flight control systems with singular perturbation (or two-

time-scale) character have not received much attention so far.

Discrete Control Systems

For the purpose of synthesizing digital controllers, _he continuous model (described by differential

equations) of a dynamic system is transferred into a die crete model (described by difference equations)
where the controls are held constant between the sampling intervals (refs. 34, 42, and 43).

The general form for a linear, shift-invariant, singularly perturbed discrete system is given by

(refs. 44 to 47)

x(k+l) = All x(k) + zl-JA12 z(k) + B1 u(k)

e 2i z(k+l) = ¢JA21 x(k) + cA22 z(k) + eJn2 u(k)

(3a)

(3b)

with 0 < i < 1 and 0 < j < 1 where x(k) and z k) are slow and fast state vectors of n- and

m-dimensions, respectively, u(k) is an r-dimensional control vector, e is the singular perturbation

parameter, and Aij and B i are matrices of appropriate, dimensionality. The initial-value problem with
x(k=0) = x(0) and z(k=0) = z(0) is formulated.



Thethreelimitingcasesofequations(3) resultin thefollowingmodels:

(1)FortheC-model (i = 0; j = 0),

x(k+ 1) = All x(k) + eA12 z(k) + B1 u(k)

z(k+l) = A21 x(k) + eA22 z(k) + B2 u(k)

(4a)

(4b)

where the small parameter e appears in the column of the system matrix.

(2) For the R-model (i = 0; j = 1),

x(k+l) -- All x(k)+ A12 z(k)+ B1 u(k)

z(k+l) -- cA21 x(k) + EA22 z(k) + eB2 u(k)

(5a)

(55)

where the small parameter E appears in the row of the system matrix.

(3) For the D-model (i = 1; j -- 1),

x(k+l) = Allx(k) + A12 z(k) + B1 u(k)

_z(k+l) = A21 x(k) + A22 z(k) + B 2 u(k)

(6a)

(65)

where the small parameter e is positioned in a fashion identical to that of the continuous systems
described by differential equations.

For the present discussion, it is enough to consider the system (eqs. (4)) as an initial-value problem

with x(k -- 0) = x(0) and z(k = 0) = z(0). The suppression of the small parameter e in equations (4)
results in the degenerate system

x(°)(k+l) -- All x(0)(k) + n I u(k)

z(°)(k+l) = A21 x(°)(k) + B2 u(k)

(x(°)(k = 0) = x(0))

= o)¢ z(o))

(7a)

(7b)

Here equation (7a) is a difference equation in x (°)(k) of order n only, whereas equation (7b) is an

algebraic equation. It means that once x(°)(k) is solved from equation (7a), z(°)(k) is automatically

fixed by equation (Tb) and z(°)(0) is not, in general, equal to z(0). Thus, the suppression of the small

parameter _ in equations (4) leads to a low-order system (eqs. (7)) with a consequent loss of the initial
condition z(0). Hence, by definition, equations (4) are in the singularly perturbed form. The original

system (eqs. (4)) and the degenerate system (eqs. (7)) are shown in figure 3. Here it is also assumed

that u is independent of E; otherwise u(k) becomes u (°) (k) when ¢ is made equal to zero. The theory

of SPATS in discrete systems is of recent origin (refs. 44 to 55). Attempts have been made to apply

the technique to digital flight control systems, but these attempts have been limited mainly to a class

of digital control of continuous systems (refs. 56 to 61).

In this section, the concepts of SPATS in continuous and discrete control systems have been

discussed. In the next section, a method for decoupling a two-time-scale system is presented.

4. Time-Scale Analysis of Digital Control Systems

In this section, attention is focused on time-scale analysis (TSA) of digital control systems. This

is followed by a description of a block-diagonalization procedure to develop a method to decouple a
discrete system into slow and fast subsystems. The basic properties and numerical aspects of these

systems are discussed. An interesting fact is provided showing that singularly perturbed discrete

systems can be viewed as two-time-scale systems. Finally, an aircraft example is given to illustrate the
method (ref. 16).

6
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Figure 3. Singularly perturb_d discrete system.

Two-Time-Scale System

Consider a linear, shift-invariant, two-time-scale dis :rete system

x(k+l) [All [x(k) B1] = A12
z(k-+- 1) J A22

with initial conditions x(k = 0) - x(0) and z(k = 0) =: z(0). It is assumed that the system (eq. (8))

is asymptotically stable and that its eigenspectrum co!lsists of a cluster of n large eigenvalues and a

cluster of m small eigenvalues. Let the eigenvalues of equation (8) be arranged as

Ill > IP_ll >... > Ip=nl > Pfl( > '" > lPfm( (9)

If the condition

= IHll/Ips,_ << 1 (10)

is satisfied, then the system (eq. (8)) possesses a tw(,-time-scale (slow and fast) property (refs. 44

and 50). In other words, the stable discrete system (eq. (8)) is said to exhibit a two-time-scale behavior

if the largest absolute eigenvalue of the fast eigenspect rum is much smaller than (i.e., has wide sepa-

ration with) the smallest absolute eigenvalue of the slow eigenspectrum. In the literature, one usually

finds stiffness being stamped on a system in which the ratio of eigenvalues is given by equation (10). This



ratio appearsexplicitlyasthe smallparametere in the case of a singularly perturbed system. It is

also noted that the slow modes are generated by large eigenvalues and the fast modes are produced by
small eigenvalues.

In order to block-diagonalize the system (eq. (8)) or separate it into slow and fast subsystems, a

two-stage linear transformation is used. In the first step, the block A21 is removed to make equation (8)
an upper-triangular matrix by using the transformation

zf(k) = z(k) + Dx(k)

where the (m × n) matrix D is a real root of the Riccati-type algebraic equation

(11)

A22D - bAll + DA12D - A21 = 0

Substituting equation (11) into (8) results in

(12)

x(k+l) As [ x(k)zf(k+i)] = [ A12 [zf(k) (13)

where

As = All - A12D

Bf = DB1 + B2

A/ = A22 + DA12

In the second stage, the transformation

xs(k) = x(k) + Ezf(k) (14)

is applied to equation (13) and the (n × m) matrix E is chosen as the solution of the Riccati-type
algebraic equation

EAf-AsE+A12=0

E(A22 + DA12) - (All -- A12D)E + A12 = 0

Then, equation (13) reduces to

(1ha)

(15b)

where

xs(k+l)] xs(k)zf(k+l)J = [As AOf] [zf(k,]+ [B;]u(k, (16)

Bs = (Is + ED)B1 + EB2

Now the system (eq. (16)) is in the desired decoupled form, as shown in figure 4. Note that the slow

and fast variables xs(k) and zf(k) are related with the original state variables x(k) and z(k) by means
of the transformations given in equations (11) and (14), which are combined to form

xs(k)l  )ED) x(k)lzf(k) ]= [(Is IE] [z(k) j (17)

and from which

= (If+DE)]. [ xs(k)[zf(k)] (18)z(k) J

Note that the special feature of these transformations is that equation (18) needs no inversions of the
matrices, and hence the simplified computation is derived.



u (k)_V__

uf(k) i '1

..i..1__ zf(k-.I.-l_tDelayl[ __ zf(k)

Figure 4. Decoupled slow Lnd fast subsystems.

The condition given in equation (10) can be writt,n as

: = maxle(A/){/mi:, le(A,)1 << 1

where

(19)

"(AS) = {,".,'_, .-, PI,,,)
,_(As)= {,.1, .., Ps.,-,}

The iterative solution of equation (12) is given as (ref. 44)

Di+I = (A22Di + DiA 12Di - A21) A_-_ (20)

with an initial value of Do = -A21All 1. Similarly fo" equations (15), we have

Ei+ 1 = A_-I1 (EiA22 + EiD&12 + A12DE i + A12 ) (21)

with an initial value of E 0 = AllA12. Substituting tt ese initial values of Do and Eo into equation (16)

gives

As0 = All + A12A21All 1 A f0 --- A22 - AxlAlllA12

Bs0 = B1 - All 1A12A22AlI1B1 + A1 # A12B2

B f0 = B2 - A21A111B1

Xso(k+l, [Aso 0 ] [xso(k)] Bso]Z/o(k+l) ]= Af ° Lzyo(k)j+ [Bfoj u(k)

and

(22a)

(22b)

(22c)

(23)

Thus, it is seen that a two-time-scale system is deco_ pied into slow and fast subsystems.

9



Singularly Perturbed Systems as Two-Time-Scale Systems

We consider the singularly perturbed system (eqs. (4)) and repeat it here for convenience. Thus,

x(k+1) eA121 [×(k)z(k+l)] = [ All

with initial conditions x(k = 0) = x(0) and z(k = 0) = z(0).

Now, substituting the transformation of equation (17) into (24) and replacing E by eE allows the

decoupled subsystem to become

where

[xs(k+l) As [xs(k)= [ o (25)

equation (24). That is,

x(°)(k+l) = AllX(0)(k) + B1 u(°)(k)

z(°)(k+l) = A21x(°)(k) + B2 u(°)(k)

(x (°) (k = o) = ×(o)) (3oa)

(z(°)(k: 0)¢ 7(o)) (30b)

Here, it is noted that z(k) has lost its initial condition z(0) in the process of degeneration. In order

to recover this lost initial condition, a correction subsystem is used. The transformations between the

original and correction variables are

xg(k) = x(k)/e k+l zg(k) = z(k)/e k (31a)

ug(k ) = u(k)//gk+i (31b)

Substituting equations (31) into (24)

cxs(k+l)
zg(k+l)

10

allows the transformed system to become

= All Xg(k) + A12 zs(k) + B1 ug(k )

= A21 xs(k) + A22 zs(k) + B2 Ug(k )

(32a)

(32b)

As = All - _A12D Af = A22 + DA12

Bs = (Is + eED)B1 + ¢EB2 Bf = DB1 + B2

and D and E are the solutions of the Riccati-type algebraic equations

_A22D - DAll + ¢DA12D - A21 = 0 (26)

eE(A22 + DA12 ) - (A11 - ¢A12D)E + A12 = 0 (27)

whose iterative solutions start with the initial values of Do = -A21All I and E0 = Al11A12. For a
sufficiently small _, the zero-order approximate solutions are

As0 = All A/0 = A22 - A21AlllA12 (28a)

Bso = B1 B f0 = B2 - A21AI?B1 (28b)

so that the decoupled subsystem becomes

Xs0(k+l)] [A0,1 0 ]rx 0( )lzf0(k+l) -- _Afo [Zfo(k)J + Bf0

with

Xs0(k = 0) = x(0)

z/0(k = 0) = z(0) - A21A11x(0)

Now the system (eq. (29)) is obtained in an alternative way from equation (24) if the singular

perturbation method (SPM) is used. The degenerate (slow) subsystem is obtained by making ¢ = 0 in



Thezero-orderapproximation(_= 0) of equations (32j becomes

o= A,, x_°)(k)+A_ z_°)(k)+ _, u_°)(k)
z_0)(k+l) = A21 x_0)(k) + A22 z_0)(k) + B 2 u_O)(k)

Rewriting equations (33) produces

x_°)(k)

z_0)(k+ 1)

where

= -All 1 [A12zl0)(k)-{- SlU_°)(k)]

: A_oz_°)(k)+B_0u_°)(k)

Ago = A22 - A2:AlllA12

Bgo = B2 - A21 &lllB1

(33a)

(33b)

(34a)

(345)

The total solution consists of the sum of the outer solution given by equations (30) and the correction

solution of equations (34). For the present, to simt,lify the presentation, u(k) and its associated
functions are omitted. Then (ref. 47),

x(k) -: x(°)(k) q-_k+lx_O)(k) (35a)

z(k) = z(°)(k) + akz_O)(k) (35b)

The" current interest is only zero-order approximations, i.e., the slow part x (°)(k) of x(k) and the fast

part e k z_°)(k) of z(k). Thus, from equations (30) and (34) (omitting input functions),

x(°)(k+ 1) = All x (_)(k) (36a)

z_°) (k + 1) = Ag0 z_ _))(k) (365)

z! 0) (k+ 1) = eAg0 z! 0) (k) (36c)

z!°)(k)
x (°)(k = 0)

z!°)(k=o)

=Ekz_0)(k) (37a)

= x(0) (375)

= z_°)(o:
= z(O) - z(°)(o)

= z(0) - A21All 1 x(0) (37c)

or

where

By comparing equations (29) and (36), it is seen tha_ to a zero-order approximation, the degenerate

and correction subsystems of the singular perturbat on method are the same as the slow and fast

subsystems of the time-scale analysis. This is a result similar to that in continuous systems where the

singular perturbation and time-scale approaches give identical results to a zero-order approximation.

The method is now demonstrated by an aircraft exan_ ple.

Application to an Aircraft

The methodology described in the previous sectim s is illustrated by the application to an aircraft.

The longitudinal dynamic equations of an aircraft model are obtained based on a rigid-body assumption

(ref. 62). Also, the angle of attack is assumed to be small. The linearized model possesses a two-time-

scale property in the sense that pitch angle, velocit3, and altitude are the slow variables and angle

11



of attackand pitch rate are the fast variables,correspondingto phugoidand short-periodmodes,
respectively.Fordigital implementation,a zero-orderhold is usedto obtainthediscretemodel.The
aircraftunderconsiderationisa twin-enginegeneralaviationaircraft. Thediscretemodelis givenby
(ref.63)

y(k+l) = Ay(k)+ Bu(k) (38)

where

y(k)-- z(k) J A= B=[A21 A22 B2

and

X 1 (k) velocity, ff/sec

x2(k) pitch angle, deg

x3 (k) altitude, ff

Zl (k) angle of attack, deg

z2(k) pitch angular velocity, deg/sec

u l(k) elevator deflection, deg

u2(k) flap deflection, deg

u3(k) throttle position, deg

A

0.923701 -0.308096 0 0.053043

0.039705 0.995525 0 -0.107454
0.087127 1.899490 1.0 -0.635270

-0.035537 0.010123 0 0.007748

0.069562 -0.012706 0 -0.097108

-0.090367]

0.588883 [
0.394015 |

0.137407[
0.287411J

B z

0.042825 -0.000395 -0.154048]

-0.484628 -0.515359 -0.002237[

-0.161525 -0.067522 -0.005257[

-0.202010 -0.289303 0.005061[
-0.806770 -0.852161 -0.006353J

The states xl(k) and x3(k ) are scaled down by a factor of 100 to facilitate easy representation. The

eigenvalues of the discrete (original) system are given by 1.0, 0.962103 + 0.175342j, 0.217297, and

0.072882, suggesting that there are three slow modes (xl(k), x2(k), and x3(k)) and two fast modes

(zl(k) and z2(k)) with the eigenvalue separation ratio given as IPll I/IPs31 -- 0.222196. The results are
now summarized below for two cases in which the two-time-scale approach is used.

Case I--Zero iterations. Here the initial values D O and E0 are themselves used in obtaining
the decoupled subsystems without resorting to any iterative solutions of the Riccati-type algebraic
equations (26) and (27). Thus,

[ 0.038398 0.001715 00]D°= [-0.074861 -0.010405

12

E 0 =

Xso

0.021141 0.098166]
-0.108780 0.587615

-0.430486 -0.730705

"0.914899 -0.309128

0.087915 1.001837

0.141016 1.904675 0]0
1.0



[ 0.0096000134947]
Af° -- L-0.099961 0 288048 J

-0.040446 - 0.089654 -0.153556]Bs0 = -0.935733 - 0.981356 0.000913 |
0.513256 0.676144 -0.008690J

-0.201197 -0.290202 -0.000858]
Bf° = [-0.804933 -0.846769 0.005203 J

The eigenvalues of the slow subsystem are 1.0 and 0.9i8368 + 0.159020j, and the eigenvalues of the
fast subsystem are 0.225595 and 0.072053 with an eigei value separation ratio of 0.232222.

Case II--Five iterations. Here the values of D5 and Es, obtained after five iterations of the Riccati

equations (26) and (27), are used for the decoupled subsystems. The following matrices are obtained:

0000 71-0.110005 -0.028_61

1-0.026374 0.2151347 ]

E5 = /-0.178397 0.741358 |
L-0.144412 - 1.487336 j

Asp =

"0.912520 -0.3103_!7 0 1

J0.106996 1.011676 1.0

0.145317 1.906477 1.0

[ 0.009715 0.131307]
hf5 = [-0.099864 0.28047_J

B85 --

-0.123959 -0.173428 -0.151789 1
-1.041054 -1.095552 0.005406

1.053315 1.219171 -0.021322

-0.197728 -0.285t_22 0.001476]By5 = -0.797591 -0.837_47 0.010657

The eigenvalues of the slow subsystem are 1.0 and 0.962098 5= 0.175345j, and the eigenvalues of the
fast subsystem are 0.217307 and 0.072882 with an eigemralue separation ratio of 0.222207.

The summary of eigenvalues for the original system an_] the decoupled subsystems is shown in table I.

The eigenvalue separation ratio (consisting of the maximum of absolute values of fast eigenvalues and

the minimum of absolute values of slow eigenvalues) is saown in table II.

The responses of the original system and the decolpled subsystems are shown in figures 5 to 9
for case I with zero iterations and in figures 10 to 14 for case II with five iterations. From both the

figures and the tables, it is clear that the decoupled subsystems are close to the original system with
considerable reduction in total computational requiremeats.

In this section it has been shown that a full-order, t:wo-time-scale system can be decoupled into

reduced-order, slow and fast subsystems. The technique has been demonstrated by applying it to an

aircraft model. The next section considers the decoupling of optimal discrete control systems.

13



14

.o

.o

c_

oo

oo

,.o

o

oo

,.o

_ ¢',1 °

,._ i_,_
,"q 1_ _'_

cO_

_r----

_Q

oo Eo
oo o _i

b- tO I'_

_'_L_
co _ co

-H -H -H

_',i oo _1

r/l

-_ _ a

I

E

if)

E _

*-" O

[o

/

lap 'ellSueqol!cl

_ ko

,_ _, o'_

0 a fo

I

,22 ,
0 0 0 0 0

oes / _,,t ' k_,!oole^

o

o

,- o

o "_
--o

oo --- _ _o

.o

_0

0
--

0

I

o

o

o
- o

oE
- cO_

0

__ 0
kN

0
0

0

0

0



I
O

E
(D

E ..Q

• -- O

O

I I__ I I
(D O4 ¢_1 taD

I I

6ep ' _10eJ,J,e _0 el6uV

0

o

o

_ 0 o "_

d _
-_ E _

F- .._

_ 0

_ 0 _

0

o _

T _
oes/_ '_!oOleA

0

o

Xl

E

E _

i

°-- 0

0 _

I°

I I

_ ' epn_,p, lV

0

0

0

o
q (_ u

°o

0 o ,po

0

0

0

0 _

o

L
C)

E

E ._

>, "o

-- Q.

e- 0°--

0 _

I°

1
_D

C

O

O °

I

(%1 o4 ¢,_
• .

I I

0eSl6ep ',_l!_Ole^
_eln6ue q0_,!cl

0

o

oq P"

b_

g'r,

_oe_
=

.£

o _

e_

o

0 _

0 N

I .__

15



0

x

cO

I
0

E

E .Q

_- 0°_

I°

I I

OeSl6eP 'FMOOle^
Jeln6ue q01!d

0

_f

o

0

0

I

_o

o

o_
(3

o
i:_ o

0

o

0

o

I

CO

E

E

•_- o

"r_

0 tn

I°

0

I I

6ap '_oelle ;o al6UV

0

0

o
- 0

-gg_

-g___

_ 0 N

g

0

0

I

0

E

16



5. Time-Scale Synthesis of Digital Optimal (!ontrol Systems

In this section a two-time-scale discrete control system is considered. The closed-loop, optimal,

linear, quadratic regulator for the system requires the _olution of a full-order, algebraic Riccati equation.

Alternatively, the original system is decomposed int(. reduced-order, slow and fast subsystems. The

closed-loop optimal control of the subsystems requires the solution of two algebraic Riccati equations of
lower order than that required for the full-order system. A composite, closed-loop suboptimal control is

formed from the sum of the slow and fast feedback opti mal controls. The main advantage of the method

is a considerable reduction in the overall computationa_ requirements for the closed-loop optimal control

of digital flight systems (refs. 18 and 64 to 67).
For the sake of convenience, let us repeat here tile stable, linear, shift-invariant discrete control

system given as equation (8):

x(k+l)] [All A12] x(k)]
z(k+l) J = LA21 A22] [z(k)J+ [B:] u(k)

where the various state variables and the matrices h,ve been previously described. The performance

index to be minimized is
(X)

1
J= -_ E [yT(k) oy(1) +uT(k) Ru(k)] (39)

k=O

where

and

Q

Qll Q12 1qr2 q22

is a positive, semidefinite symmetric matrix of order" (n + m) x (n + m).

positive, definite symmetric matrix of order (r x r).

The closed-loop optimal control is given by (ref. {_8)

The matrix R denotes a

u(k) = -R-1BTp (I + BR-1BTp)-IAy(k) (40)

where P, of order (n + m) × (n+ m), is the positive, definite symmetric solution of the algebraic, matrix

Riccati equation

)-'P = ATp (I + BR- LBTp A + Q (41)

where

A:[AI,AI,1A21 A22 J B2

The closed-loop optimal system is given by

y(k+l) = (A- BF) y(k) (42)

where

F = R-1BTp (I + }|R-1BTp)-IA

Instead of directly tackling the original regulator problem described by equations (8) and (39),

one should appropriately decompose it into two re_:ulator problems (approaches) for slow and fast

subsystems. For this, it is necessary to separate the original performance index into the sum of two

performance indices for slow and fast subsystems.

17



Separation of Original Performance Index

Approach 1. In approach 1 the original performance index (eq. (39)) has to be represented as the sum

of the performance indices of the slow and fast subsystems. Using the transformation in equation (18)

between the original state variables (x(k) and z(k)) and the subsystem variables (xs(k) and zf(k)) in

equation (39) and using us(k) = uf(k) = u(k) as shown in figure 4 results in

1 oc [ T(k) Rsus(k)J = _ _ x_r(k)qs_ xs(k) + ,.y(k)OH zI(k) + us
0

+ xT(k) qsl zi(k) + z_(k) Qis xs(k) + u_(k) RI uI(k)] (43)

where

Qll Q12]Qss-- [Is, -D T] Q1T2 Q22J [__I_)]

Qll Q12] EQff : [E T, -(if + DE) T] [t_(if + DE) j]
QT2 Q22 J

[°1,°12] QsI = [Is, D T] QT2 -Q22 (I1 +EDE)

qfs=[ ET, (If+DE) T ] [

Note that QIs=QT andRs=R I=R/2.*I

-Qll Q12 ]

Since J has to be represented as the sum of Js and Jf, it is necessary to neglect Qsf and Qfs.
Then,

100

Js = _ Z [xv(k) Qssxs(k) + sT(k) R8 u_(k)]
0

1 oc

0

(44)

(45)

As Qsf and Qfs have been neglected, this certainly introduces an error in that J will not be equal to
the sum of Js and Jf. To take this into account, it is necessary to readjust Qss and QII (ref. 65).

Approach 2. Since the present method is simply a design or synthesis problem, first select the

performance indices of the subsystems and then formulate the total performance index of the original

system. Thus, define

J_ -- _ _ Q_sxs(k) + R's
o

(46)

Jf = _ E [z_'(k)Q_Hzy(k)+ u_(k)R_f uf(k)] (47)
0

18



Usingthe transformationin equation(17)betweenthesubsystemvariablesxs(k) andzf(k) andthe
originalsystemvariablesx(k) andz(k) produces

j _-j, +
1 oc

= 5 _ [yT(k) q' y(k)+ ur(k)R ' u(k)]
o

(48)

where

/ ____

q_l =

=

Q22 =

q'll Qi2 ]

(Is + ED)TQ_s(Is + ED) + DTQ_ID

(Is + ED)TQ!ssE + DTQ_/

T t
D QssE + Q_f

Thus, in equations (46) to (48), first select ! !Qss, QfI' Rs' and R:f; and then by using D and E, one

obtains Qt and R !. Here it is possible to decouple J ,Is, and JI exactly without any approximation.
The original J is dependent on D and E, the deccupling matrices, which may not be of practical

advantage.

Optimal Control of Subsystems

Using the transformation in equation (17) allows :he original system in equation (8) to decompose

into slow and fast subsystems as

xs(k+l) = As Xs(i:) + Bs us(k)

zi(k-t-1 ) = A I z](:_: ) + B I ul(k)

(49)

(50)

Now these slow and fast subsystems are optimized with respect to their corresponding performance

indices given in equations (44) and (45), respectively. The slow regulator problem consists of the slow

subsystem of equation (49) and the performance ind,x of equation (44). The fast regulator problem

consists of the fast subsystem of equation (50) and the performance index of equation (45). For

convenience, let Qss = Qs and qff = Qf.
The optimal feedback control of the slow subsystem of equation (49) is given by

us(k) -Rs -1 T ( B.,RslBTps)-'= Bs Ps Is + Asxs(k) (51)

where Ps, of order (n x n), is a positive, definite syrtmetric solution of the reduced-order, algebraic

Riccati equation
T -1

Ps = AsPs (Is + nsRs_Bs Ps) As + Qs (52)

Similarly, the optimal feedback control of the fast sub;ystem of equation (50) becomes

u/(k) = -R)-IByP/(I/+ B, R;IByp/)-IAf z/(k) (53)

where Pf, of order (mx m), is a positive, definite symmetric solution of the reduced-order, algebraic
Riccati equation

Pf = AIP / (II + B/R;/B_P/)-IA: + QI (54)

19



The control laws of equations (51) and (53) are rewritten, respectively, as

us(k) = -F_ xs(k) (55)

ui(k) = -FI ,V(k) (56)

where

-1 T (Is-{- BsRslBsTPs) -1Fs = R s Bs Ps As

It is noted that the control laws in equations (51) and (53) are optimal only with respect to the slow

and fast subsystems of equations (49) and (50). It is, however, computationally simpler to determine

these control laws than the optimal control law of equation (40) of the original system (refs. 51 and 52).

Composite Control

The composite control is formulated as the sum of the slow and fast feedback controls given by

equations (51) and (53). That is,

_c(k) = u,(k) + u/(k)
= - [F_×,(k) + F: z:(k)] (57)

Applying the transformation of equation (17) between the slow and fast variables and the original

variables to equation (57) produces

uc(k) = - [Fcs x(k) + Fc/z(k)] = -Fc y(k) (58)

where

Fcs = Fs(Is + ED) + FfD

Fcf = FsE + F f

Fc = Ire,, Fcl]

Using the composite control of equation (58) in the original system in equation (8) results in

yc(k+l) = (A -BFc) yc(k) (59)

as shown in figure 15. It is known that minimizing the original performance index of equation (39) with

respect to the composite system of equation (59) results in the suboptimal performance index (refs. 65

and 69),
1

Jc = _ yT(0) Pc y(0) (60)

where Pc is the positive, definite symmetric solution of the discrete Liapunov equation

Pc = (A - BFc)Tpc(A - BFc) + Q + FTRFc (61)

20
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1

(a) Optimal feedt ack control.

+ Yc(k + 1)
q

II = x c(k)

System

=- z c(k)

(b) Composite feedback control.

Figure 15. Original and , omposite systems.

Aircraft Example

Consider the same aircraft model as previously given. The eigenvalues of the discrete (original)
model are 1.0, 0.962103 + 0.175342j, 0.217297, and (t.072882, an indication that there are three slow

modes (xl(k), x2(k), and x3(k)) and two fast modes (Zl(k) and z2(k)) with an eigenvalue separation

ratio of 0.222196. The performance measures in eq ration (39) are taken _as Qll = Q22 = I and

Rs = RI = 1.
Using the method described in the previous section gives the results summarized below. The

positive, definite matrix P of equation (41) is

p

4.822583 0.427518 0.70!}917 -0.272287 0.059216"

0.427518 11.654952 3.732418 -2.665579 3.042291

0.709917 3.732418 2.69(}923 -1.096067 0.882337

-0.272287 -2.665579 -1.096067 1.742674 -0.689301

0.059216 3.042291 0.882337 -0.689301 2.015052

Using the above P, the optimal control of equation (40) is obtained with F as

F __

"-0.021105 -1.136159 -0.2t!i8959 0.260873 -0.507318"

-0.110915 -0.700095 -0.101750 0.142104 -0.410844

-0.629305 -0.025190 -0.100651 0.033007 0.003334
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The closed-loop optimal system of equation (42) has the eigenvalues 0.843545, 0.258790 + 0.326649j,

and 0.06457 q- 0.047911j.
For the slow and fast subsystems, the corresponding values are

P8

4.621454 1.051044 0.945863]

1.051044 13.073895 4.463674]
0.945863 4.463674 2.710497J

and

[1.204794 0.244345]P/ = 0.24435 1.914426J

For the composite control, the feedback matrix Fc, obtained from equation (58), is

-0.010457 -1.138702 -0.270112 0.262312 -0.5073731
Fc = -0.110238 -0.699239 -0.101678 0.142112 -0.410528|

-0.654236 -0.018681 -0.100062 0.031065 0.004602J

and the positive, definite matrix Pc, obtained from the discrete Liapunov equation (61), is

Pc

5.045733 0.338736 0.671223 -0.205383 -0.013507

0.338736 11.734399 3.769142 -2.716177 3.103791
0.671223 3.769142 2.714962 -1.128617 0.918364

-0.205383 -2.716177 -1.128617 1.790493 -0.744196

-0.013507 3.103791 0.918364 -0.744196 2.083318

The corresponding closed-loop, suboptimal composite system has eigenvalues 0.840132, 0.259351 4-

0.334107j, and 0.063358 + 0.046563". The performance indices of the original optimal system and the

composite suboptimal system are obtained as 612.1122 and 616.1734, respectively, with a percentage
error of 0.66347. The central processing time on the CDC CYBER computer required for the original

system is 5.42 sec, whereas that required for the composite system is only 0.44 sec. Throughout the

paper, the computations are performed by using the linear-quadratic-regulator (LQR) design package
ORACLS and commercial mathematical library (ref. 70).

The responses for the various states and controls for the exact (optimal) system and the composite

(suboptimal) system are shown in figures 16 to 23. These responses are obtained for the case when the
aircraft trajectories are to be regulated to the equilibrium conditions of Xle = 190.66 ft/sec, X2e = 0,

X3e = 2000 ft, and zle = Z2e = 0 with equilibrium controls.
The above results clearly show an excellent agreement between the exact system and the composite

system. Once again it is noted that the composite control is obtained from the lower-order, slow and

fast subsystems with a considerable reduction in the overall computation (refs. 16 to 18).

Concluding Remarks

This paper describes a time-scale method for digital control systems with an application to an
aircraft. The idea of digital flight control systems was briefly discussed and their advantages were

enumerated. The previous research in digital flight control was summarized. The concepts of singular

perturbations and time scales (SPATS) in continuous and discrete control systems were introduced.
Attention was focused on the time-scale analysis of digital control systems. A block-diagonalization

procedure was described for developing a method to decouple a discrete system into slow and fast
subsystems. Basic properties and numerical aspects of the method were discussed. It was shown that

singularly perturbed discrete systems can be viewed as two-time-scale systems. Finally, an aircraft

example was given to illustrate the method.
The important problem of optimal control of two-time-scale discrete systems was discussed. The

closed-loop, optimal, linear, quadratic regulator for the system requires the solution of a full-order,

algebraic, matrix Riccati equation. Alternatively, the original system was decomposed into reduced-

order slow and fast subsystems. The closed-loop optimal control of the subsystems requires the solution
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of two algebraic Riccati equations of an order lower than that required for the full-order system.
A composite, closed-loop, suboptimal control has !_een formed from the sum of the slow and fast

optimal feedback controls. Again, numerical results obtained for an aircraft model showed very close

agreement between the exact (optimal) solution altd the composite (suboptimal) solution which is

computationally simpler. The main advantage of th_ method is a considerable reduction in the overall

computational requirements for obtaining the closed-loop, optimal control laws of digital flight systems.

The significance of the methodology is that it can be used for generating optimal guidance and control
strategies for real-time onboard simulation.

NASA Langley Research Center
Hampton, VA 23665-5225
September 15, 1988
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